Congenital disorder of fucosylation type 2c (LADII) presenting with short stature and developmental delay with minimal adhesion defect.
نویسندگان
چکیده
Leukocyte adhesion deficiency type II is a hereditary disorder of neutrophil migration caused by mutations in the guanosine diphosphate-fucose transporter gene (SLC35C1). In these patients, inability to generate key fucosylated molecules including sialyl Lewis X leads to leukocytosis and recurrent infections, in addition to short stature and developmental delay. We report two brothers with short stature and developmental delay who are compound heterozygotes for novel mutations in SLC35C1 resulting in partial in vivo defects in fucosylation. Specifically, plasma glycoproteins including immunoglobulin G demonstrated marked changes in glycoform distribution. While neutrophil rolling on endothelial selectins was partially impeded, residual adhesion proved sufficient to avoid leukocytosis or recurrent infection. These findings demonstrate a surprising degree of immune redundancy in the face of substantial alterations in adhesion molecule expression, and show that short stature and developmental delay may be the sole presenting signs in this disorder.
منابع مشابه
O-fucosylation of notch occurs in the endoplasmic reticulum.
LADII (leukocyte adhesion deficiency type II)/CDGIIc (congenital disorder of glycosylation type IIc) is a rare autosomal recessive disease characterized by leukocyte adhesion deficiency as well as severe neurological and developmental abnormalities. It is caused by mutations in the Golgi GDP-fucose transporter, resulting in a reduction of fucosylated antigens on the cell surface. A recent study...
متن کاملInsights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene.
Leukocyte adhesion deficiency type 2 (LADII) is characterized by defective selectin ligand formation, recurrent infection, and mental retardation. This rare syndrome has only been described in 2 kindreds of Middle Eastern descent who have differentially responded to exogenous fucose treatment. The molecular defect was recently ascribed to single and distinct missense mutations in a putative Gol...
متن کاملPLENARY PAPER Correction of Leukocyte Adhesion Deficiency Type II With Oral Fucose
We describe a simple, noninvasive, and effective therapy for leukocyte adhesion deficiency type II (LAD II), a rare inherited disorder of fucose metabolism. This disorder leads to an immunodeficiency caused by the absence of carbohydratebased selectin ligands on the surface of neutrophils as well as to severe psychomotor and mental retardation. The fucosylation defect in LAD II fibroblasts can ...
متن کاملCorrection of leukocyte adhesion deficiency type II with oral fucose.
We describe a simple, noninvasive, and effective therapy for leukocyte adhesion deficiency type II (LAD II), a rare inherited disorder of fucose metabolism. This disorder leads to an immunodeficiency caused by the absence of carbohydrate-based selectin ligands on the surface of neutrophils as well as to severe psychomotor and mental retardation. The fucosylation defect in LAD II fibroblasts can...
متن کاملPeters Plus syndrome is a new congenital disorder of glycosylation and involves defective Omicron-glycosylation of thrombospondin type 1 repeats.
Peters Plus syndrome is an autosomal recessive disorder characterized by anterior eye chamber defects, disproportionate short stature, developmental delay, and cleft lip and/or palate. It is caused by splice site mutations in what was thought to be a beta1,3-galactosyltransferase-like gene (B3GALTL). Recently, we and others found this gene to encode a beta1,3-glucosyltransferase involved in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2014